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In this paper the homotopy perturbation method is used for calculation of the frequencies of the coupled
secular oscillations and axial secular frequencies of a nonlinear ion trap. The motion of the ion in a rapidly
oscillating field is transformed to the motion in an effective potential. The equations of ion motion in the
effective potential are in the form of a Duffing-like equation. The homotopy perturbation method is used for
solving the resulted system of coupled nonlinear differential equations and the resulted axial equation for
obtaining the expressions for ion secular frequencies as a function of nonlinear field parameters and amplitudes
of oscillations. The calculated axial secular frequencies are compared with the results of Lindstedt-Poincare
method and the exact results.
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I. INTRODUCTION

The radio frequency �rf� quadrupole ion trap has three
rotationally symmetrical hyperbolic electrodes. The ion tra-
jectories in a trap with perfect rotational symmetry around
the axial �z� direction and radial �r� direction can be derived
analytically from the well-known Mathieu differential equa-
tion �1�. In an ideal ion trap the potential is pure quadrupole
and the main properties of the movement of an ion which are
obtained by the solution of Mathieu equation are as follows
�2,3�:

�i� The movement in the axial �z� direction is completely
decoupled from that in the perpendicular radial �r� direction
due to the absence of “ross terms” of the form rz in the
expression for the quadrupole potential.

�ii� The rf field amplitude varies in a linear manner with
distance from the center in the r and z directions of the
cylindrical coordinates and has only one parameter describ-
ing the periodicity.

�iii� The stability of ion trajectories of a given mass/
charge ratio in an infinitely large quadrupole field does not
depend on their initial starting conditions �position and ve-
locity�.

�iv� Only the two mass-related trapping parameters a and
q of the dc and rf fields, respectively, determine whether the
solution for the ion movement is stable or not?

�v� If the parameters a and q are kept inside the stability
region of the stability diagram, in the absence of any auxil-
iary ac potentials applied the end-cap electrodes, the ions
perform stable secular oscillations in the r and z directions
with frequencies lower than half that of the driving voltage
applied to the ion trap.

�vi� The frequency of the secular oscillation of an ion is
independent of its displacement from the center.

In a practical ion trap the electric field distribution, devi-
ates from linearity which is the characteristic of a pure qua-
drupolar trap geometry. This deviation is caused by misalign-

ments, nonhyperbolic shapes, truncated electrodes,
perforation in the electrodes, space charge potential of a
large ion cloud �4�, additional dipolar excitation potential
�4,5� and collisions with the trap. These nonlinear agents
superimpose weak multipole fields �e.g., hexapole, octapole,
and higher-order fields� and the resulting nonlinear field ion
traps exhibit some effects which differ considerably from
those of the linear field traps �2,3�:

�i� The components of the rf field amplitude arising from
the higher-order multipoles are nonlinear in the r and z di-
rections of the cylindrical coordinates.

�ii� For multipoles higher than or equal to hexapoles, the
secular frequencies of oscillation are no longer constant for
constant field parameters, they now become amplitude de-
pendent.

�iii� The ion trajectories in the r and z directions become
amplitude dependent and are now coupled because of the
existence of cross terms of the form rz in the expressions for
the higher-order multipole potentials.

�iv� Several types of nonlinear resonance conditions exist
for each type of multipole superposition, forming resonance
lines within the stability region of the stability diagram.
These are the nonlinear resonances that were first detected by
Von Busch and Paul �6�.

�v� Contrary to many experimental observations, the tra-
jectories of ions with nonlinear resonances do not always
exhibit instability. They take up energy from the rf drive field
and thus increase their secular oscillation amplitude. Because
of the amplitude dependence of the secular frequency, this
frequency now drifts out of resonance, resulting in a kind of
beat motion.

The equations governing the motion of the ion in the non-
linear ion trap are the nonlinear Mathieu type equations
which cannot be solved analytically. Many simulation studies
�7–10� and experimental studies �11,12� have been done on
the effects of nonlinear terms in the nonlinear equation of
motion. The superposition of weak higher multipole fields,
not only slightly change the ion motion compared to their
motion in pure quadrupole ion traps, it is the nonlinear reso-
nances and other nonlinear effects which dramatically and*adoroudi@aeoi.org.ir
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qualitatively change the oscillation of ions in nonlinear traps.
Simulation studies have shown that the higher-order terms

in the electric field make the ion secular frequency to shift
with respect to the value �u=�u� /2�u=r or z�. �u is the
ion secular frequency in the radial and axial directions, � is
the rf drive frequency applied to the central ring electrode
and �u is a function of Mathieu parameters au and qu which
can be calculated using continuous fraction relationship be-
tween these values �2,13�. For qu values less than 0.4, �u can
be computed from Dehmelt approximation �2,13�.

Simulation studies �14� have shown that hexapole super-
position decreases the axial secular frequency, positive octo-
pole superposition increases the ion axial secular frequency
and the negative octopole superposition decreases the axial
secular frequency. Experimentally, it has been shown that
�15� the octopole and hexapole superposition resulted in a
decrease in ion secular frequency. Sevugarajan and his co-
worker �16� have found the equation of motion of the ion in
axial �z� direction in the form of the Duffing equation and
have applied the Lindstedt-Poincare technique for solving
the resulting nonlinear equation and have obtained the secu-
lar frequency shift as a function of the strength of hexapole
and octopole superposition. They have also studied coupled
secular oscillations in nonlinear Paul trap using multiple
scales method �17�.

In this paper we use the homotopy perturbation method
for studying nonlinear ion traps. We apply this method to
solve the system of coupled nonlinear differential equations
and also the Duffing-like equation of the axial direction and
calculate the ion secular frequencies. We compare the results
of this paper for the axial direction with those obtained by
using Lindstedt-Poincare technique �16� and with the exact
results.

The outline of the paper is as follows: in Sec. II the ho-
motopy method is introduced. In Sec. III the equations of ion
motion in a nonlinear ion trap are derived. In part A of Sec.
IV the homotopy perturbation method is applied to solve the
system of coupled nonlinear differential equations of ion mo-
tion in nonlinear ion trap. In part B of this section, the same
method is used for solving the Duffing-like equation of the
axial direction and the results are shown. Finally, the con-
cluding remarks are given in Sec. V.

II. HOMOTOPY METHOD

The perturbation techniques which are usually considered
in advanced courses of classical mechanics �18,19� are the
Lindstedt-Poincare and the alternative Lindstedt-Poincare
methods which are widely used for solution of nonlinear
differential equations �20–23�. The standard Lindstedt-
Poincare method is applicable to equations like d2x

dt2 +�0
2x

+�f�x�=0 which has a linear term ��0
2x� and a small pertur-

bation parameter ���. This method cannot be applied to a
system with a nonlinear differential equation without linear
term or without small parameter. In homotopy perturbation
method �24–28� one does not need a linear term and small
parameter. This method provides an approach to introducing
an expanding parameter and a linear term. The homotopy
perturbation method can solve various nonlinear equations.

For illustrating the basic idea of this method, we consider
the following nonlinear differential equation,

A�u� − f�r�� = 0 r� � � , �1�

with boundary conditions:B�u,
�u

�n
� = 0 r� � � , �2�

where A is a general differential operator, B is a boundary
operator, f�r�� is a known analytic function, and � is the
boundary of the domain �. We suppose the operator A can
be divided into two linear part �L� and nonlinear part �N�.
Then the Eq. �1� can be written as

L�u� + N�u� − f�r�� = 0. �3�

By the homotopy technique, we construct a homotopy
v�r� , p� :�� �0,1�→R which satisfies

	�v,p� = �1 − p��L�u� − L�u0�� + p�A�v� − f�r��� = 0

�4a�

or

	�v,p� = L�v� − L�u0� + pL�u0� + p�N�v� − f�r��� = 0

�4b�

Where p� �0,1� is an embedding parameter, u0 is an initial
approximation of Eq. �1� which satisfies the boundary con-
ditions.

From Eq. �4a� or �4b� we have

	�v,0� = L�v� − L�u0� = 0 �5�

and

	�v,1� = A�v� − f�r�� = 0 �6�

It is clear that when p=0, Eqs. �4a� or �4b� becomes a linear
equation; and when p=1 it transforms to the original nonlin-
ear equation. So the changing of p from zero to one is just
that of L�v�−L�u0�=0 to A�v�− f�r��=0.

The embedding parameter p monotonically increases
from 0 to 1 as the trivial problem L�v�−L�u0�=0 is continu-
ously deformed to the problem A�v�− f�r��=0 The basic idea
of the homotopy method is that continuously deform a
simple problem easy to solve into the difficult problem to be
solved. The basic assumption is that the solution of Eqs. �4a�
or �4b� can be written as a power series in p,

v = v0 + pv1 + p2v2 + ¯ · �7�

Setting p=1 results in the approximate solution of Eq. �1�,

u = lim
p→1

v = v0 + v1 + v2 + ¯ · �8�

This method, although, has eliminated limitations of the tra-
ditional perturbation methods, it can take full advantages of
the traditional perturbation techniques and can be used for
solving various strongly nonlinear equations.
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III. EQUATIONS OF ION MOTION IN A NONLINEAR ION
TRAP

A solution of Laplace’s equation in spherical polar coor-
dinates �
 ,� ,�� for a system with axial symmetry can be
written in the following general form �29�:

�
,�,�� = 0�
n=0

�

An

n

r0
n Pn�cos �� , �9�

where 0=U+V cos �t is the sinusoidal rf field applied to
the trap, An’s are arbitrary dimensionless coefficients,
Pn�cos �� denotes a Legendre polynomial of order n, and r0
is a scaling factor �i.e., the internal radius of the ring elec-
trode�. When 
nPn�cos �� is expressed in cylindrical polar
coordinates �r ,z� and the two higher-order multipoles, hexa-
pole, and octopole corresponding to n=3 and n=4, along
with the quadrupole component corresponding to n=2 are
taken into account, the time dependent potential distribution
inside the trap takes the form

�r,z,t� =
A2

r0
2 V cos �t�2z2 − r2

2
+

f1

r0
�2z3 − 3r2z

2
�

+
f2

r0
2�8z4 − 24z2r2 + 3r4

8
�	 �10�

Where f1=
A3

A2
and f2=

A4

A2
. Here we have assumed the opera-

tion of the trap along the au=0 axis in the Mathieu stability
plot, that is, the dc component of 0 is equal to zero. The
coefficients A2, A3, and A4 refer to the weight of the quadru-
pole, hexapole and octopole superposition, respectively.

According to classical mechanics �30� the motion of an
ion in a rapidly oscillating field like �r ,z , t� �due to the
largeness of �� can be averaged and transformed to the mo-
tion in an effective potential, Uef f�r ,z�, related to �r ,z , t�
through the following relation:

Uef f�r,z� =
e

2m

�� �� �r,z,t�dt�2 . �11�

The classical equation of ion motion in the effective potential
Uef f�r ,z�, with no excitation potential applied to the endcap
electrodes is given by

d2r�

dt2 +
e

m
�� Uef f�r,z� = 0, �12�

where r� is the position vector of the ion. From the above
equations we get the equation of motion in the axial �z�
direction as

z̈ + �0z
2 z + �2z2 + �3z3 − �4zr2 = 0. �13�

And in the radial �r� direction as

r̈ + �0r
2 r − �5r3 − �6rz2 = 0, �14�

where

�0u =
qu�

2�2
, �15�

qz = − 2qr =
4eV

mr0
2�2 , �16�

�2 =
9f1�0z

2

2r0
, �17�

�3 = �8f2 +
9f1

2

2
��0z

2

r0
2 , �18�

�4 = 3f2
�0z

2

r0
2 , �19�

�5 = �6f2 −
9f1

2

2
��0r

2

r0
2 , �20�

�6 = 12f2
�0r

2

r0
2 . �21�

The nonlinear system of equations governed by Eqs. �13�
and �14� represents the coupled ion dynamics in z and r
directions. This system has the form of a homogeneous
coupled Duffing oscillator with quadratic and qubic nonlin-
earities. It is similar to the nonlinear mechanical and physical
systems with two degrees of freedom. It has been discussed
in literature in connection with different problems exten-
sively �31–34�.

By putting r=0 in Eq. �13� one arrives at an equation in
axial direction which depends only on z variable. In the re-
sulted equation, by introducing the dimensionless variable x

through the relation x= z
r0

, ignoring
9f1

2

2 in comparison with
8f2 in �3 for simplicity and omission of index z from �0z we
get the equation,

ẍ + �0
2x + �2�x

2 + �3�x
3 = 0, �22�

where �2�= 9
2 f1�0

2 and �3�=8f2�0
2.

In part A of the next section we try to apply the homotopy
perturbation method to the system of coupled nonlinear Eqs.
�13� and �14� for calculation of the secular frequencies. It
will be shown that in first order approximation, the ratios of
secular frequencies

�z

�0z
and

�r

�0r
can be calculated through

analytic relations in terms of f1 and f2 �the nonlinear field
parameters� and Az and Ar �the amplitudes of oscillations�. In
second-order approximation the system of nonlinear equa-
tions is transformed to a pair of coupled nonlinear algebraic
equations which cannot be solved analytically and needs nu-
merical techniques.

The nonlinear differential Eq. �22� has the form of a Duf-
fing oscillator without driving field. There are several meth-
ods that can be used for solution of the Duffing equation
�19,20�. In part B of the next section we have used the ho-
motopy perturbation method for solving this nonlinear differ-
ential equation of motion and have calculated the axial secu-
lar frequencies. We have compared the results with those
obtained by some other models and with the exact results for
Duffing equation without quadratic nonlinearity.
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IV. APPLICATION OF HOMOTOPY METHOD FOR
SOLUTION OF THE EQUATIONS OF MOTION

A. System of coupled equations

For solving the system of coupled nonlinear Eqs. �13� and
�14� with initial conditions z�0�=Az, ż�0�=0, r�0�=Ar and
ṙ�0�=0 we construct the following homotopies:

z̈ + �z
2z + p���0z

2 − �z
2�z + �2z2 + �3z3 − �4zr2� = 0, �23�

r̈ + �r
2r + p���0r

2 − �r
2�r − �5r3 − �6rz2� = 0, �24�

where p� �0,1�. When p=0, the equations become the lin-
earized equations, z̈+�z

2z=0 and r̈+�r
2r=0 and when p=1, it

turns out to be the original set of nonlinear equations. We
assume that the periodic solutions to Eqs. �23� and �24� can
be written as two power series in p,

z = z0 + pz1 + p2z2 + ¯ · �25�

r = r0 + pr1 + p2r2 + ¯ · �26�

Substitution of the series �25� into Eq. �23� and series �26�
into Eq. �24�, and collecting terms of the same power of p,
gives the set of equations,

� z̈0 + �z
2z0 = 0, z0�0� = Az ż0�0� = 0

z̈1 + �z
2z1 + ��0z

2 − �z
2�z0 + �2z0

2 + �3z0
3 − �4z0r0

2 = 0, z1�0� = 0, ż1�0� = 0.
� �27�

for z0 and z1, and the set of equations,

� r̈0 + �r
2r0 = 0, r0�0� = Ar, ṙ0�0� = 0

r̈1 + �r
2r1 + ��0r

2 − �r
2�r0 − �5r0

3 − �6r0z0
2 = 0, r1�0� = 0, ṙ1�0� = 0.

� �28�

for r0 and r1.
The first equations of the two sets �27� and �28� can be

solved easily, giving the solutions z0�t�=Az cos �zt and
r0�t�=Ar cos �rt. Substitution of z0�t� into the second equa-
tion of set �27� and r0�t� into the second equation of set �28�
and after doing some algebra, having no secular term for
both z1�t� and r1�t�, implies,

�z
2 = �0z

2 +
3

4
�3Az

2 −
1

2
�4Ar

2, �29�

�r
2 = �0r

2 −
3

4
�5Ar

2 −
1

2
�6Az

2. �30�

These relations can be written in the following forms in
terms of f1 and f2 �the nonlinear field parameters� and Az and
Ar �the amplitudes of oscillations�:

�z
2

�0z
2 = 1 +

3

4
�8f2 +

9

2
f1

2�Az
2

r0
2 −

3

2
f2

Ar
2

r0
2 , �31�

�r
2

�0r
2 = 1 −

3

4
�6f2 −

9

2
f1

2�Ar
2

r0
2 − 6f2

Az
2

r0
2 . �32�

These are the approximate amplitude dependent secular fre-
quencies of coupled secular oscillations in a nonlinear ion
trap in first order of homotopy perturbation method. For go-
ing to higher-order approximation, the parameter-expanding
method �the modified Lindstedt-Poincare method� �35� is ap-
plied. For this purpose, we construct the following homo-
topies,

z̈ + �0z
2 z + p��2z2 + �3z3 − �4zr2� = 0, �33�

r̈ + �0r
2 r − p��5r3 + �6rz2� = 0. �34�

Now, we expand the coefficients of the linear terms ��0z
2 and

�0r
2 � into power series of p,

�0z
2 = �z

2 + p�1z + p2�2z + ¯ �35�

�0r
2 = �r

2 + p�1r + p2�2r + ¯ ¯ �36�

Substitution of the power series �25� and �35� into Eq. �33�,
and the power series �26� and �36� into Eq. �34� and collect-
ing terms of the same power of p, results in the two sets of
equations as follows:

�z̈0 + �z
2z0 = 0

z̈1 + �z
2z1 + �1zz0 + �2z0

2 + �3z0
3 − �4z0r0

2 = 0

z̈2 + �z
2z2 + �1zz1 + �2zz0 + 2�2z0z1 + 3�3z0

2z1 − �4r0�2z0r1 + z1r0� = 0
� �37�
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�r̈0 + �r
2r0 = 0

r̈1 + �r
2r1 + �1rr0 − �5r0

3 − �6z0
2r0 = 0

r̈2 + �r
2r2 + �1rr1 + �2rr0 − 3�5r0

2r1 − �6z0�2r0z1 + z0r1� = 0
� �38�

These two systems can be solved for six unknowns z0, z1, z2
and r0, r1, r2 subject to initial conditions,

z0�0� = Az, ż0�0� = 0, z1�0� = 0, ż1�0� = 0, z2�0� = 0,

ż2�0� = 0, �39�

r0�0� = Ar, ṙ0�0� = 0, r1�0� = 0,

ṙ1�0� = 0, r2�0� = 0, ṙ2�0� = 0. �40�

Now, similar to what we did in connection with the sets �27�
and �28�, we easily solve the first equations of the two sets
�37� and �38� with the solutions z0�t�=Az cos �zt and r0�t�
=Ar cos �rt. Substitution of z0�t� into the second equation of
the set �37� and r0�t� into the second equation of the set �38�,
and having no secular term in both z1�t� and r1�t�, implies,

�1z = −
3

4
�3Az

2 +
1

2
�4Ar

2, �41�

�1r =
3

4
�5Ar

2 +
1

2
�6Az

2. �42�

The results for the secular frequencies at this stage are
equivalent to the results of first order calculation given in
relations �29� and �30�.

Now we can solve the second order differential equations
for z1�t� and r1�t� subject to initial conditions given in Eqs.
�39� and �40�.

Substitution of the results for z1�t� and r1�t�, along with
the results for z0�t� and r0�t� in the third equations of the sets
�37� and �38� gives the equations for z2�t� and r2�t� which to
be solved. Having no secular term in z2�t� and r2�t� rises to a
complicated coupled nonlinear algebraic equations for two
unknowns �2z and �2r which cannot be solved analytically
and needs numerical techniques.

B. Axial equation with no r dependency

For solving the nonlinear equation ẍ+�0
2x+�2�x

2+�3�x
3

=0 with initial conditions x�0�=A, and ẋ�0�=0, we apply the
same procedure outlined in part A and construct the homo-
topy,

ẍ + �2x + p���0
2 − �2�x + �2�x

2 + �3�x
3� = 0 p � �0,1� .

�43�

By writing the periodic solution to Eq. �43� as a power series
in p,

x = x0 + px1 + p2x2 + ¯ · �44�

and substitution of this series into Eq. �43�, gives the follow-
ing set of equations:

� ẍ0 + �2x0 = 0, x0�0� = A, ẋ0�0� = 0

ẍ1 + �2x1 + ��0
2 − �2�x0 + �2x0

2 + �3x0
3 = 0, x1�0� = 0, ẋ0�0� = 0.

� �45�

It is clear that x0�t�=A cos �t. Having no secular term in
x1�t�, implies

� =��0
2 +

3

4
�3A2. �46�

This is the approximate amplitude dependent frequency in
first order. Now we go to second order approximation by
constructing the following homotopy,

ẍ + �0
2x + p��2x2 + �3x3� = 0 �47�

We expand the coefficient of the linear term ��0
2� and the

solution �x�t�� into power series of p as

�0
2 = �2 + p�1 + p2�2 + ¯ , �48�

x = x0 + px1 + p2x2 + ¯ . �49�

Substitution of these series into Eq. �47�, and collecting
terms of the same power of p, results in the following set of
equations:

�ẍ0 + �2x0 = 0

ẍ1 + �2x1 + �1x0 + �2x0
2 + �3x0

3 = 0

ẍ2 + �2x2 + �1x1 + �2x0 + 2�2x0x1 + 3�3x0
2x1 = 0.

�
�50�

The solution for the first equation is x0�t�=A cos �t. Inser-
tion of this solution in the second equation and implication
for no secular term in x1�t�, gives the result,
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�1 = −
3

4
�3A2. �51�

The second equation of the set is solved for this value of �1
and the final solution for x1�t�, along with the solution for
x0�t� are inserted in third equation of the set. No secular term
for x2�t� implies that

�2 =
5

6

�2
2A2

�2 −
3

128

�3
2A4

�2 . �52�

Combining these results with p=1 gives rise to the result

�0
2 = �2 + �1 + �2 = �2 −

3

4
�3A2 +

5

6

�2
2A2

�2 −
3

128

�3
2A4

�2 .

�53�

This equation can be solved for � and the final result is:

� =
��0

2 +
3

4
�3A2 +��0

4 +
3

2
�3A2�0

2 +
21

32
�3

2A4 −
10

3
�2

2A2

2
. �54�

In this relation A is the maximum value for x and xmax can be
obtained by inserting z0 for z in equation x= z

r0
. Insertion of

the expressions for A, �2, and �3 in Eq. �53� gives the final
result,

�

�0
=
�1 + 3f2 +�1 + 6f2 +

21

2
f2

2 −
135

4
f1

2

2
. �55�

The perturbed frequencies can be calculated through the re-
lation �55� as a function of field aberrations �parameters f1
and f2�. It is clear from the relation that ion secular fre-
quency is dependent on the sign of the octopole superposi-
tion and independent of the sign of the hexapole superposi-
tion. According to the relation �55�, hexapole superposition
decreases the axial secular frequency, positive octopole su-
perposition increases the ion axial secular frequency and the

negative octopole superposition decreases the axial secular
frequency.

The values of �
�0

for different values of f1 and f2 are given

in Table I and for comparison purposes the values of �
�0

in
Lindstedt-Poincare approximation �16,20� which can be cal-
culated by the relation

�

�0
= 1 +

144f2 − 405f1
2

96
�56�

are also given in the table.
For a Duffing oscillator with only cubic term as nonlin-

earity ��2=0�, the exact values of frequencies are available
in literature and can be calculated by the relation

TABLE I. The calculated values of �

�0
for different values of f1

and f2 in Lindstedt-Poincare approximation and the homotopy
method.

f1 f2

Lindstedt-
Poincare

This paper
�homotopy method�

0.05 0.05 1.06445 1.0640

0.10 0.10 1.0525 1.1112

0.15 0.15 1.1301 1.1453

0.20 0.20 1.1312 1.1677

0.25 0.25 1.1111 1.1775

0.05 �0.05 0.9144 0.9086

0.1 �0.10 0.8078 0.7447

TABLE II. Comparison of the calculated values of �

�0
in this

paper with the values of the Lindstedt-Poincare approximation and
the exact values.

f2 Lindstedt-Poincare
Homotopy method

�this paper� Exact results

0.01 1.015 1.0149 1.01487

0.05 1.075 1.0727 1.072

0.10 1.15 1.1414 1.1389

0.15 1.225 1.2065 1.2017

0.20 1.30 1.2682 1.2612

0.25 1.375 1.3279 1.3177

0.30 1.45 1.3849 1.372

0.40 1.60 1.4923 1.4739

0.50 1.75 1.5928 1.569

�0.01 0.9850 0.98490 0.98487

�0.05 0.9250 0.92255 0.92136

�0.10 0.850 0.83983 0.83343

�0.15 0.7750 0.75162 0.73099

�0.20 0.70 0.65918 0.59968
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�

�0
=

��1 + 4f2

2F��

2
;

2f2

1 + 4f2
� �57�

Where F� �
2 ;k�=K�k� is the complete elliptic integral of the

first kind.
In Table II, the exact values of secular frequencies for

f1=0 and different values of f2 are compared with the results
of this paper and the results of Lindstedt-Poincare approxi-
mation. As is seen in the table, the results of this paper are
much more closer to the exact values than those of the
Lindstedt-Poincare method.

V. CONCLUSION

In this paper we have derived the equations of ion motion
in a nonlinear ion trap. The nonlinear ion trap is generated by
superposition of weak multipole fields on the pure quadru-
pole field. Only hexapole and octopole field superpositions
are considered. The computed equations of ion motion are
nonlinear Duffing-like equations. We have used the homo-
topy perturbation method for calculating the coupled secular
frequencies as well as axial secular frequencies of the ions in
a nonlinear ion trap. The results of this paper are compared
with the exact results and the results of the Lindstedt-
Poincare method for axial secular frequencies.
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